Impact of aging on nanoparticle toxicity in real matrices is scarcely investigated due to a lack of suitable methodologies. Herein, the toxicity of pristine and aged silver nanoparticles (Ag NPs) to a bioluminescent bioreporter was measured in spiked crude and final wastewater samples (CWs and FWs, respectively) collected from four wastewater treatment plants (WWTPs). Results showed lower toxicity of pristine Ag NPs in CWs than in FWs.
View Article and Find Full Text PDFPseudomonas putida mono-species biofilms were exposed to silver nanoparticles (Ag NPs) in artificial wastewater (AW) under hydrodynamic conditions. Specifically, 48 h old biofilms received a single pulse of Ag NPs at 0, 0.01, 0.
View Article and Find Full Text PDFBacteria based ecotoxicology assessment of manufactured nanoparticles is largely restricted to Escherichia coli bioreporters in laboratory media. Here, toxicity effects of model OECD nanoparticles (Ag NM-300K, ZnO NM-110 and TiO2 NM-104) were assessed using the switch-off luminescent Pseudomonas putida BS566::luxCDABE bioreporter in Luria Bertani (LB) medium and artificial wastewater (AW). IC50 values ∼4 mg L(-1), 100 mg L(-1) and >200 mg L(-1) at 1 h were observed in LB for Ag NM-300K, ZnO NM-110 and TiO2 NM-104, respectively.
View Article and Find Full Text PDFHuman cysteine cathepsin S (catS) participates in distinct physiological and pathophysiological cellular processes and is considered as a valuable therapeutic target in autoimmune diseases, cancer, atherosclerosis, and asthma. We evaluated the capacity of negatively charged glycosaminoglycans (heparin, heparan sulfate, chondroitin 4/6-sulfates, dermatan sulfate, and hyaluronic acid) to modulate the activity of catS. Chondroitin 4-sulfate (C4-S) impaired the collagenolytic activity (type IV collagen) and inhibited the peptidase activity (Z-Phe-Arg-AMC) of catS at pH 5.
View Article and Find Full Text PDFConditions for simple derivatization of reducing carbohydrates via adipic acid dihydrazide microwave-assisted condensation are described. We demonstrate with a diverse set of oligo- and polysaccharides how to improve a restrictive and labor intensive conventional conjugation protocol by using microwave-assisted chemistry. We show that 5 min of microwave heating in basic or acidic conditions are adequate to generate, in increased yields, intact and functional glycosylhydrazides, whereas hours to days and acidic conditions are generally required under conventional methods.
View Article and Find Full Text PDF