Publications by authors named "F Mackenroth"

A high-intensity laser beam propagating through a dense plasma drives a strong current that robustly sustains a strong quasistatic azimuthal magnetic field. The laser field efficiently accelerates electrons in such a field that confines the transverse motion and deflects the electrons in the forward direction. Its advantage is a threshold rather than resonant behavior, accelerating electrons to high energies for sufficiently strong laser-driven currents.

View Article and Find Full Text PDF

Ultra-intense lasers facilitate studies of matter and particle dynamics at unprecedented electromagnetic field strengths. In order to quantify these studies, precise knowledge of the laser's spatiotemporal shape is required. Due to material damage, however, conventional metrology devices are inapplicable at highest intensities, limiting laser metrology there to indirect schemes at attenuated intensities.

View Article and Find Full Text PDF

Conventionally, friction is understood as a mechanism depleting a physical system of energy and as an unavoidable feature of any realistic device involving moving parts. In this work, we demonstrate that this intuitive picture loses validity in nonlinear quantum electrodynamics, exemplified in a scenario where spatially random friction counter-intuitively results in a highly directional energy flow. This peculiar behavior is caused by radiation friction, i.

View Article and Find Full Text PDF

Laser pulses traveling through a plasma can feature group velocities significantly differing from the speed of light in vacuum. This modifies the well-known Volkov states of an electron inside a strong laser-field from the vacuum case and, consequently, all quantum electrodynamical effects triggered by the electron. Here we present an in-depth study of the basic process of photon emission by an electron scattered from an intense short laser pulse inside a plasma, labeled nonlinear Compton scattering, based on modified Volkov solutions derived from first principles.

View Article and Find Full Text PDF

We propose a novel mechanism for ion acceleration based on the guided motion of electrons from a thin layer. The electron motion is locked to the moving nodes of a standing wave formed by a chirped laser pulse reflected from a mirror behind the layer. This provides a stable longitudinal field of charge separation, thus giving rise to chirped-standing-wave acceleration of the residual ions of the layer.

View Article and Find Full Text PDF