Designing detection systems based on transimpedance amplifiers is a complex task because noise, frequency response, and stability are coupled constraints. This work presents a straightforward design method of detection systems based on transimpedance amplifiers. We take into account the objectives, scope of the design, and requirements and specifications, including the input signal levels.
View Article and Find Full Text PDFA method for calibration of ultrasonic sensors for optoacoustics that provides both frequency response and sensitivity is presented. In order to obtain the bandwidth and the frequency response of an uncalibrated sensor, a point source with broadband spectra generated by a laser-induced bubble on a copper wire submerged in water is employed. On the other hand, the sensitivity measurement relies on the spatial symmetry of the pressure pulse and on a calibrated transducer.
View Article and Find Full Text PDFA study on the influence of multiple reflections on the transmission coefficients of uniaxial plane-parallel plates is presented. Two representative models are analyzed: one that considers only the first transmission, and a rigorous one, taking into account the multiple reflections within the plate. Modules, phases, and the interference between $p$ and $s$ transmitted fields are evaluated in a wide range of angles of incidence by means of three emblematic examples that illustrate the effects of thickness, birefringence, and optical axis orientation.
View Article and Find Full Text PDFIn this work we present what we believe is the first application of software-defined optoelectronics (SDO) for bidimensional optoacoustic tomography (OAT). The SDO concept refers to optoelectronic systems where the functionality associated with the conditioning and processing of optical and electrical signals are digitally implemented and controlled by software. This paradigm takes advantage of the flexibility of software-defined hardware platforms to develop adaptive instrumentation systems.
View Article and Find Full Text PDFWe present a method to generate sub-microsecond quasi-unipolar pressure pulses. Our approach is based on the laser irradiation of a thin copper wire submerged in water. The acoustic waveforms were recorded using two different, well characterized, wideband detection techniques: piezoelectric and optical interferometry.
View Article and Find Full Text PDF