The induction of Fos protein was used to localise hypothalamic neurones activated by ramps of noxious skin heating delivered at a rate of 2.5 degrees C s(-1) to preferentially activate C-nociceptors. This was combined with retrograde transport of cholera toxin subunit B from identified 'pressor' and 'depressor' sites in the dorsolateral/lateral or the ventrolateral columns of the periaqueductal grey.
View Article and Find Full Text PDFThe induction of Fos protein was used to localise hypothalamic neurones activated by noxious somatic stimulation. This was combined with retrograde transport of fluorescent latex microspheres from identified 'pressor' and 'depressor' sites in the dorsolateral/lateral or ventrolateral columns of the periaqueductal grey (PAG). Fos-positive neurones were found throughout the rostral hypothalamus.
View Article and Find Full Text PDFThe aim of the present study was to determine whether or not descending control of spinal dorsal horn neuronal responsiveness following neuronal activation at pressor sites in the rostral ventrolateral medulla is selective for nociceptive information. Extracellular single-unit activity was recorded from 49 dorsal horn neurons in the lower lumbar spinal cord of anaesthetized rats. The 30 Class 2 neurons selected for investigation responded to noxious (pinch and radiant heat) and non-noxious (prod, stroke and/or brush) stimulation within their cutaneous receptive fields on the ipsilateral hindpaw.
View Article and Find Full Text PDFThe present study was designed to examine peripheral, in particular noxious visceral, inputs to neurons in the hypothalamus that project to the midbrain periaqueductal gray. The induction of Fos protein was used to localize hypothalamic neurons that were activated by noxious visceral stimulation. This was combined with retrograde transport of fluorescent latex microspheres from identified "pressor" and "depressor" sites in the dorsolateral/lateral or ventrolateral columns of the periaqueductal gray.
View Article and Find Full Text PDFThe present study was designed to investigate the organization of excitatory projections from regions of the anterior hypothalamus that are known to co-ordinate autonomic and sensory functions to medullo-output neurons in the periaqueductal gray. The induction of Fos protein was used to identify neurons in the periaqueductal gray that were activated synaptically by chemical stimulation at sites in the anterior hypothalamus from which either increases or decreases in arterial blood pressure were evoked (pressor sites and depressor sites, respectively). This was combined with retrograde tracing using fluorescent latex microspheres from sites in the medulla.
View Article and Find Full Text PDF