Publications by authors named "F M Munoz-Perez"

In this work, we present two new multifocal intraocular lens (MIOL) designs, both based on the silver mean kinoform diffractive lens. We demonstrate that a single aperiodic diffractive profile can be used to create two different MIOLs: one with a kinoform structure and the other with a stepwise profile. Quantitative assessment of the designs was carried out using the through focus modulation transfer function and the area under the modulation transfer function for the prediction of their visual performance.

View Article and Find Full Text PDF

In this work, we design and implement a new bifocal diffractive spiral lens within an optical tweezers system. The proposed diffractive optical element coined Kolokaski Kinoform Spiral Lens (KKSL), generates twin optical vortices along the propagation direction. The axial positions, as well as the diameters of the generated vortex beams, are correlated with the Kolakoski aperiodic sequence introduced in the design of the diffractive lens.

View Article and Find Full Text PDF

In this work, we present a new family of Zone Plates (ZPs) designed using the self-generating Kolakoski sequence. The focusing and imaging properties of these aperiodic diffractive lenses coined Kolakoski Zone Plates (KZPs) are extensively studied. It is shown that under monochromatic plane-wave illumination, a KZP produces two main foci of the same intensity along the axial axis.

View Article and Find Full Text PDF

The design and implementation of a multiplexed spiral phase mask in an experimental optical tweezers setup are presented. This diffractive optical element allows the generation of multiple concentric vortex beams with independent topological charges and without amplitude modulation. The generalization of the phase mask for multiple concentric vortices is also shown.

View Article and Find Full Text PDF
Article Synopsis
  • The study demonstrates how a low-power continuous-wave laser can trap and manipulate vapor bubbles in liquids using the Marangoni effect, which involves temperature-induced surface tension changes.
  • Bubbles of varying sizes are created using light-absorbing silver nanoparticles placed on an optical fiber, allowing for control over thermal effects that influence bubble behavior.
  • Numerical simulations provide models for temperature profiles and Marangoni forces, while experiments with three optical fibers show the ability to transfer bubbles between fibers by sequentially activating their lasers.
View Article and Find Full Text PDF