This study investigated whether noninvasive near-infrared (NIR) energy could be transduced into heat in deep-seated organs in which adenovirus type-5 vectors tend to accumulate, thereby activating heat shock protein (HSP) promoter-mediated transgene expression, without local administration of photothermal agents. NIR irradiation of the subdiaphragmatic and left dorsocranial part of the abdominal cavity of adult immunocompetent C3H/HeNRj mice with an 808-nm laser effectively increased the temperature of the irradiated regions of the liver and spleen, respectively, resulting in the accumulation of the heat-inducible HSP70 protein. Spatial control of transgene expression was achieved in the NIR-irradiated regions of the mice administered an adenoviral vector carrying a firefly luciferase (fLuc) coding sequence controlled by a human HSP70B promoter, as assessed by bioluminescence and immunohistochemistry analyses.
View Article and Find Full Text PDFThe aim of this paper is to achieve in situ photochemical synthesis of silver nanoclusters (AgNCs) stabilized by the multiple-amine groups of chitosan (Ch@AgNCs) with luminescent and photothermal properties. Ch@AgNCs were obtained by applying a fast and simple methodology previously described by our group. Direct functionalization of AgNCs with chitosan template provided new nanohybrids directly in water solution, both in the presence or absence of oxygen.
View Article and Find Full Text PDFAchievement of spatiotemporal control of growth factors production remains a main goal in tissue engineering. In the present work, we combined inducible transgene expression and near infrared (NIR)-responsive hydrogels technologies to develop a therapeutic platform for bone regeneration. A heat-activated and dimerizer-dependent transgene expression system was incorporated into mesenchymal stem cells to conditionally control the production of bone morphogenetic protein 2 (BMP-2).
View Article and Find Full Text PDFNon-invasiveness and relative safety of photothermal therapy, which enables local hyperthermia of target tissues using a near infrared (NIR) laser, has attracted increasing interest. Due to their biocompatibility, amenability of synthesis and functionalization, gold nanoparticles have been investigated as therapeutic photothermal agents. In this work, hollow gold nanoparticles (HGNP) were coated with poly-l-lysine through the use of COOH-Poly(ethylene glycol)-SH as a covalent linker.
View Article and Find Full Text PDFConventional tissue engineering approaches rely on scaffold-based delivery of exogenous proteins, genes, and/or cells to stimulate regeneration via growth factor signaling. However, scaffold-based approaches do not allow active control of dose, timing, or spatial localization of a delivered growth factor once the scaffold is implanted, yet these are all crucial parameters in promoting tissue regeneration. To address this limitation, we developed a stable cell line containing a heat-activated and rapamycin-dependent gene expression system.
View Article and Find Full Text PDF