Carbon dots (CDs) represent an emerging class of nanomaterials that combine outstanding photoluminescent properties with low toxicity and excellent biocompatibility. These unique features have garnered significant interest for potential applications in sensing as well as nanovectors for bioactive compounds. Within this context, the possibility of synthesizing chiral carbon dots (CCDs) has paved the way for a plethora of bioapplications in their interaction with chiral biomolecules.
View Article and Find Full Text PDFNowadays, the widespread diffusion of infections caused by opportunistic fungi represents a demanding threat for global health security. This phenomenon has also worsened by the emergence of contagious events in hospitalisation environments and by the fact that many fungi have developed harsh and serious resistance mechanisms to the traditional antimycotic drugs. Hence, the design of novel antifungal agents is a key factor to counteract mycotic infections and resistance.
View Article and Find Full Text PDFOxime chemistry has emerged as a versatile tool for use in a wide range of applications. In particular, the combination of oximes with esters and urethanes has enabled the realisation of Covalent Adaptable Networks (CANs) with improved and tunable dynamic properties. Nevertheless, an exclusively oxime-based chemistry has not yet been explored in the fabrication of CANs.
View Article and Find Full Text PDFCarbon dots (CDs) are an emerging class of carbon nanoparticles, which for their characteristics have found applications in many fields such as catalysis, materials and biomedicine. Within this context, the application of CDs as antibacterial agents has received much attention in very recent years, while their use as antifungal nanoparticles has been scarcely investigated. Here we report a systematic investigation of the surface functional groups of CDs to study their influence on these nanoparticles' against Candida albicans.
View Article and Find Full Text PDF