Publications by authors named "F Lyzwa"

The role of the crystal lattice for the electronic properties of cuprates and other high-temperature superconductors remains controversial despite decades of theoretical and experimental efforts. While the paradigm of strong electronic correlations suggests a purely electronic mechanism behind the insulator-to-metal transition, recently the mutual enhancement of the electron-electron and the electron-phonon interaction and its relevance to the formation of the ordered phases have also been emphasized. Here, we combine polarization-resolved ultrafast optical spectroscopy and state-of-the-art dynamical mean-field theory to show the importance of the crystal lattice in the breakdown of the correlated insulating state in an archetypal undoped cuprate.

View Article and Find Full Text PDF

With optical spectroscopy we provide evidence that the insulator-metal transition in Sr_{2}Ir_{1-x}Rh_{x}O_{4} occurs close to a crossover from the Mott- to the Slater-type. The Mott gap at x=0 persists to high temperature and evolves without an anomaly across the Néel temperature, T_{N}. Upon Rh doping, it collapses rather rapidly and vanishes around x=0.

View Article and Find Full Text PDF

By means of infrared spectroscopy, we determine the temperature-doping phase diagram of the Fano effect for the in-plane Fe-As stretching mode in Ba_{1-x}K_{x}Fe_{2}As_{2}. The Fano parameter 1/q^{2}, which is a measure of the phonon coupling to the electronic particle-hole continuum, shows a remarkable sensitivity to the magnetic and structural orderings at low temperatures. Most strikingly, at elevated temperatures in the paramagnetic tetragonal state we observe a linear correlation between 1/q^{2} and the superconducting critical temperature T_{c}.

View Article and Find Full Text PDF

We present an infrared spectroscopy study of ZrTe_{5}, which confirms a recent theoretical proposal that this material exhibits a temperature-driven topological quantum phase transition from a weak to a strong topological insulating state with an intermediate Dirac semimetal state around T_{p}≃138  K. Our study details the temperature evolution of the energy gap in the bulk electronic structure. We found that the energy gap closes around T_{p}, where the optical response exhibits characteristic signatures of a Dirac semimetal state, i.

View Article and Find Full Text PDF