Publications by authors named "F Lucklum"

In this paper, we investigate the effect of the curvature and torsion of the ear canal on its resonance through a comparison between several ear canal models. Utilizing Stinson's ear canal geometries as a reference, we build and analyze several ear canal models using both transmission matrix and numerical methods for the purpose of comparative assessment. A conical transmission unit, which considers visco-thermal effects, is employed for the modeling of the human ear canal.

View Article and Find Full Text PDF

In this work we present the theoretical and experimental verification of complete phononic band gaps in the Yablonovite structure with additional spheres in a face-centered cubic arrangement. The Finite Difference Time Domain method was used in the calculations of band structure and transmission spectrum. Different spatial directions and different polarizations of the incident acoustic field were investigated numerically and experimentally.

View Article and Find Full Text PDF

We present a miniature 3D-printed dynamic pump using the centrifugal operating principle. Dynamic pumps typically yield higher flow rates than displacement pumps at reasonable output pressure. Realizing smaller devices suitable for millifluidic and microfluidic applications brings challenges in terms of design, fabrication and actuation.

View Article and Find Full Text PDF

The connection of microfluidic devices to the outer world by tubes and wires is an underestimated issue. We present methods based on 3D printing to realize microfluidic chip holders with reliable fluidic and electric connections. The chip holders are constructed by microstereolithography, an additive manufacturing technique with sub-millimeter resolution.

View Article and Find Full Text PDF

Phononic crystals offer unique band structures for acoustic wave propagation. Fabricating intricate threedimensional phononic crystals allows a new class of devices with complex phononic band structures beyond capabilities of two-dimensional designs. We have successfully fabricated novel 3D phononic crystals with 1 mm lattice constant and minimum feature sizes as low as 100 micron using high-resolution stereolithography printing.

View Article and Find Full Text PDF