Radiat Prot Dosimetry
March 2024
This study focused on assessing the risk from the exposure to radon contained in domestic water for a significant part (~20%) of the Greek population. Also, the variation of radon in domestic water was monitored from 2017 to 2023 in certain villages that showed relatively high radon levels and relied on boreholes for their water supply. The radon in domestic water activity concentrations measured in the investigated Greek places ranged from lower than the minimum detection limit (2 Bq L-1) levels up to 187 Bq L-1 with an average value of 9.
View Article and Find Full Text PDFThis study focused on the radon transfer from the water to the air and the subsequent impact of waterborne radon indoors, taking advantage of the enhanced and decreasing from year to year radon-in-water concentrations observed in the Arnea village in Northern Greece. Some other essential aspects and observations regarding radon-in-water were also discussed. Concerning radon transfer from water to the air, the transfer efficiencies for showering and the use of the bathroom tap were estimated by measuring the radon-in-water and the waterborne radon-in-air concentrations in sealed bathrooms of two apartments in Arnea.
View Article and Find Full Text PDFIn the framework of the IAEA Coordinated Research Project (CRP) J02012 on 'Advancing Radiation Detection Equipment for Detecting Nuclear and Other Radioactive Material Out of Regulatory Control', the properties of two commercial instruments (1) InSpector 1000 analyzer (Canberra), with a 2″ × 2″ NaI(Tl) scintillator and (2) RIIDEYE M-G3 analyzer (Thermo Scientific), with a 3″ × 3″ NaI(Tl) scintillator, were evaluated as dosimeters by laboratory and field measurements. In the Ionizing Radiation Calibration Laboratory (IRCL) of the Greek Atomic Energy Commission, the NaI(Tl) spectrometers were tested in order to measure Ambient gamma Dose Equivalent Rate (ADER). The NaI(Tl) scintillators were irradiated in a homogeneous field with 662 keV photons with different ADER values from 0.
View Article and Find Full Text PDFRadiat Prot Dosimetry
August 2020
The capabilities of electret ion chambers (EICs) to measure mean ambient dose equivalent rates were investigated by performing both laboratory and field studies of their properties. First, EICs were 'calibrated' to measure ambient gamma dose equivalent in the Ionizing Calibration Laboratory of the Greek Atomic Energy Commission. The EICs were irradiated with different gamma photon energies and from different angles.
View Article and Find Full Text PDFThe Telemetric Early Warning System Network of the Greek Atomic Energy Commission consists mainly of a network of 24 Reuter-Stokes high-pressure ionization chambers (HPIC) for gamma dose rate measurements and covers all Greece. In the present work, the response of the Reuter-Stokes HPIC to terrestrial and cosmic radiation was evaluated in comparison with spectroscopic data obtained by in situ gamma spectrometry measurements with portable hyper pure Germanium detectors (HPGe), near the Reuter-Stokes detectors and time series analysis. For the HPIC detectors, a conversion factor for the measured absorbed dose rate in air (in nGy h-1) to the total ambient dose equivalent rate Ḣ*(10), due to terrestrial and cosmic component, was deduced by the field measurements.
View Article and Find Full Text PDF