The photo-induced oxidation of TyrZ and TyrD by P680(•+), that involves both electron and proton transfer (PCET), has been studied in oxygen-evolving photosystem II from Thermosynechococcus elongatus. We used time-resolved absorption spectroscopy to measure the kinetics of P680(•+) reduction by tyrosine after the first flash given to dark-adapted PS II as a function of temperature and pH. The half-life of TyrZ oxidation by P680(•+) increases from 20ns at 300K to about 4μs at 150K.
View Article and Find Full Text PDFThe soluble NAD(+)-reducing hydrogenase (SH) from Ralstonia eutropha H16 belongs to the O2-tolerant subtype of pyridine nucleotide-dependent [NiFe]-hydrogenases. To identify molecular determinants for the O2 tolerance of this enzyme, we introduced single amino acids exchanges in the SH small hydrogenase subunit. The resulting mutant strains and proteins were investigated with respect to their physiological, biochemical, and spectroscopic properties.
View Article and Find Full Text PDFThermodynamically unfavourable electron transfers are enabled by coupling to an energy-supplying reaction. How the energy is transduced from the exergonic to the endergonic process is largely unknown. Here we provide the structural basis for an energy transduction process in the reductive activation of B12-dependent methyltransferases.
View Article and Find Full Text PDFHydrogenases catalyze the reversible oxidation of H(2) into protons and electrons and are usually readily inactivated by O(2). However, a subgroup of the [NiFe] hydrogenases, including the membrane-bound [NiFe] hydrogenase from Ralstonia eutropha, has evolved remarkable tolerance toward O(2) that enables their host organisms to utilize H(2) as an energy source at high O(2). This feature is crucially based on a unique six cysteine-coordinated [4Fe-3S] cluster located close to the catalytic center, whose properties were investigated in this study using a multidisciplinary approach.
View Article and Find Full Text PDFIn Photosystem I (PS I) long-wavelength chlorophylls (LWC) of the core antenna are known to extend the spectral region up to 750 nm for absorbance of light that drives photochemistry. Here we present clear evidence that even far-red light with wavelengths beyond 800 nm, clearly outside the LWC absorption bands, can still induce photochemical charge separation in PS I throughout the full temperature range from 295 to 5 K. At room temperature, the photoaccumulation of P700(+•) was followed by the absorbance increase at 826 nm.
View Article and Find Full Text PDF