Publications by authors named "F Le Vot"

The statistics of the first-encounter time of diffusing particles changes drastically when they are placed under confinement. In the present work, we make use of Monte Carlo simulations to study the behavior of a two-particle system in two- and three-dimensional domains with reflecting boundaries. Based on the outcome of the simulations, we give a comprehensive overview of the behavior of the survival probability S(t) and the associated first-encounter time probability density H(t) over a broad time range spanning several decades.

View Article and Find Full Text PDF

We investigate how confinement may drastically change both the probability density of the first-encounter time and the associated survival probability in the case of two diffusing particles. To obtain analytical insights into this problem, we focus on two one-dimensional settings: a half-line and an interval. We first consider the case with equal particle diffusivities, for which exact results can be obtained for the survival probability and the associated first-encounter time density valid over the full time domain.

View Article and Find Full Text PDF

Reaction-diffusion equations are widely used as the governing evolution equations for modeling many physical, chemical, and biological processes. Here we derive reaction-diffusion equations to model transport with reactions on a one-dimensional domain that is evolving. The model equations, which have been derived from generalized continuous time random walks, can incorporate complexities such as subdiffusive transport and inhomogeneous domain stretching and shrinking.

View Article and Find Full Text PDF

We study normal diffusive and subdiffusive processes in a harmonic potential (Ornstein-Uhlenbeck process) on a uniformly growing or contracting domain. Our starting point is a recently derived fractional Fokker-Planck equation, which covers both the case of Brownian diffusion and the case of a subdiffusive continuous-time random walk (CTRW). We find a high sensitivity of the random walk properties to the details of the domain growth rate, which gives rise to a variety of regimes with extremely different behaviors.

View Article and Find Full Text PDF

Expanding media are typical in many different fields, e.g., in biology and cosmology.

View Article and Find Full Text PDF