Publications by authors named "F L van Muiswinkel"

G protein-coupled receptor kinase 2 (GRK2) modulates G protein-coupled receptor desensitization and signaling. We previously described down-regulation of GRK2 expression in vivo in rat neonatal brain following hypoxia-ischemia. In this study, we investigated the molecular mechanisms involved in GRK2 down-regulation, using organotypic cultures of neonatal rat hippocampal slices exposed to oxygen and glucose deprivation (OGD).

View Article and Find Full Text PDF

Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS), marked by infiltration of monocyte-derived macrophages in the brain parenchyma. Macrophages contribute to disease pathology by secretion of inflammatory mediators, such as reactive oxygen species (ROS). ROS are involved in various processes underlying MS pathology, including monocyte migration across the blood-brain barrier, phagocytosis and degradation of myelin, axonal degeneration, and oligodendrocyte damage.

View Article and Find Full Text PDF

Neuromuscular synapses differ markedly in their plasticity. Motor nerve terminals innervating slow muscle fibers sprout vigorously following synaptic blockage, while those innervating fast-fatigable muscle fibers fail to exhibit any sprouting. Here, we show that the axon repellent Semaphorin 3A is differentially expressed in terminal Schwann cells (TSCs) on different populations of muscle fibers: postnatal, regenerative and paralysis induced remodeling of neuromuscular connections is accompanied by increased expression of Sema3A selectively in TSCs on fast-fatigable muscle fibers.

View Article and Find Full Text PDF

Selective neuronal loss is a prominent feature in both acute and chronic neurological disorders. Recently, a link between neurodegeneration and a deficiency in the lipid transport protein phosphatidylinositol transfer protein alpha (PI-TPalpha) has been demonstrated. In this context it may be of importance that fibroblasts overexpressing PI-TPalpha are known to produce and secrete bioactive survival factors that protect fibroblasts against UV-induced apoptosis.

View Article and Find Full Text PDF

Rotenone has been reported to induce various degrees of Parkinsonism in rats. We tested whether advancing age alters the sensitivity of dopaminergic neurons to rotenone. A low, systemic dose of rotenone had no effect on young rats, but led to a 20-30% reduction of tyrosine hydroxylase-positive neurons in the substantia nigra of older rats.

View Article and Find Full Text PDF