Axicabtagene ciloleucel (axi-cel), a chimeric antigen receptor T-cell therapy, has significantly improved clinical outcomes in adult patients with relapsed/refractory large B-cell lymphoma. However, few studies have examined patient-reported outcomes (PROs) or neurocognitive performance in patients treated with axi-cel. Moreover, no longitudinal PRO study has reported on patients treated with axi-cel as standard of care in the United States, to our knowledge.
View Article and Find Full Text PDFBackground: Relapsed and refractory Diffuse large B cell lymphoma (DLBCL) can be successfully treated with axicabtagene ciloleucel (axi-cel), a CD19-directed autologous chimeric antigen receptor T cell (CAR-T) therapy. Diagnostic image-based features could help identify the patients who would clinically respond to this advanced immunotherapy.
Purpose: The aim of this study was to establish a radiomic image feature-based signature derived from positron emission tomography/computed tomography (PET/CT), including metabolic tumor burden, which can predict a durable response to CAR-T therapy in refractory/relapsed DLBCL.
Chimeric antigen receptor T-cell (CAR-T) therapy has emerged as a breakthrough treatment for relapsed and refractory multiple myeloma (RRMM). However, these products are complex to deliver and alternative options are now available. Identifying biomarkers that can predict therapeutic outcomes is crucial for optimizing patient selection.
View Article and Find Full Text PDFIonizing radiotherapy (RT) is a widely used palliative and curative treatment strategy for malignancies. In solid tumors, RT-induced double strand breaks lead to the accumulation of indels, and their repair by non-homologous end-joining has been linked to the ID8 mutational signature in resistant cells. However, the extent of RT-induced DNA damage in hematologic malignancies and its impact on their evolution and interplay with commonly used chemotherapies has not yet been explored.
View Article and Find Full Text PDF