People use the mechanical interplay between stability and manoeuvrability to successfully walk. During single-limb support, body states (position and velocity) that increase in lateral stability will inherently resist lateral manoeuvres, decrease medial stability and facilitate medial manoeuvres. Although not well understood, people can make behavioural decisions exploiting this relationship in anticipation of perturbations or direction changes.
View Article and Find Full Text PDFPrevious work suggests that synergistic activity among motor elements implicated in force production tasks underlies enhanced performance stability associated with visual feedback. A hallmark of synergistic activity is reciprocal compensation, that is, covariation in the states of motor elements that stabilizes critical performance variables. The present study examined if characteristics of reciprocal compensation are indicators of individuals' capacity to respond adaptively to variations in the resolution of visual feedback about criterion performance.
View Article and Find Full Text PDFThe impact of environmental uncertainty on locomotor adaptation remains unclear. Environmental uncertainty could either aid locomotor adaptation by prompting protective control strategies that stabilize movements to assist learning or impede adaptation by reducing error sensitivity and fostering hesitance to pursue corrective movements. To explore this, we investigated participants' adaptation to a consistent force field after experiencing environmental uncertainty in the form of unpredictable balance perturbations.
View Article and Find Full Text PDFObjective: A motor complete spinal cord injury (SCI) results in the loss of voluntary motor control below the point of injury. Some of these patients can regain partial motor function through inpatient rehabilitation; however, there is currently no biomarker to easily identify which patients have this potential. Evidence indicates that spasticity could be that marker.
View Article and Find Full Text PDFPaired corticospinal-motoneuronal stimulation (PCMS) has been used to enhance corticospinal excitability and functional outcomes in humans with spinal cord injury (SCI). Here, we examined the effect of increasing the number of paired pulses on PCMS-induced plasticity. During PCMS, corticospinal volleys evoked by transcranial magnetic stimulation (TMS) over the hand motor cortex were timed to arrive at corticospinal-motoneuronal synapses of the first dorsal interosseous (FDI) muscle 1-2 ms before the arrival of antidromic potentials elicited in motoneurons by electrical stimulation of the ulnar nerve.
View Article and Find Full Text PDF