Europe's semi-natural grasslands support notably high levels of temperate biodiversity across multiple taxonomic groups. However, these ecosystems face unique conservation challenges. Contemporary agricultural practices have replaced historical traditional low-intensity agriculture in many regions, resulting in a spectrum of management intensities within these ecosystems, ranging from highly intensive methods to complete abandonment.
View Article and Find Full Text PDFRecent epidemiologic studies support an association between chronic low-dose radiation exposure and the development of cardiovascular disease (CVD). The molecular mechanisms underlying the adverse effect of chronic low dose exposure are not fully understood. To address this issue, we have investigated changes in the heart proteome of ApoE deficient (ApoE) C57Bl/6 female mice chronically irradiated for 300 days at a very low dose rate (1 mGy/day) or at a low dose rate (20 mGy/day), resulting in cumulative whole-body doses of 0.
View Article and Find Full Text PDFLoss of insect biodiversity is widespread, and in forests habitat loss is one of the major drivers responsible. Integrative forest management must consider the preservation and promotion of key habitat features that provide essential microhabitats and resources to conserve biodiversity alongside ecosystem functions and services.
View Article and Find Full Text PDFForests account for nearly 90 % of the world's terrestrial biomass in the form of carbon and they support 80 % of the global biodiversity. To understand the underlying forest dynamics, we need a long-term but also relatively high-frequency, networked monitoring system, as traditionally used in meteorology or hydrology. While there are numerous existing forest monitoring sites, particularly in temperate regions, the resulting data streams are rarely connected and do not provide information promptly, which hampers real-time assessments of forest responses to extreme climate events.
View Article and Find Full Text PDFBackground: Tree to tree interactions are important structuring mechanisms for forest community dynamics. Forest management takes advantage of competition effects on tree growth by removing or retaining trees to achieve management goals. Both competition and silviculture have, thus, a strong effect on density and distribution of tree related microhabitats which are key features for forest taxa at the stand scale.
View Article and Find Full Text PDF