By exploiting an established on-surface metallation strategy, we address the ability of the corrolic macrocycle to stabilise transition metal ions in high-valent (III) oxidation states in metal-supported molecular layers. This approach offers a route to engineer adsorbed metal complexes that cannot be easily fabricated by organic synthesis methods and bear a vacant axial coordination site for catalytic conversions.
View Article and Find Full Text PDFThe controlled attachment of protecting groups combined with the ability to selectively abstract them is central to organic synthesis. The trimethylsilyl (TMS) functional group is a popular protecting group in solution. However, insights on its activation behavior under ultra-high vacuum (UHV) and surface-confined conditions are scarce.
View Article and Find Full Text PDFReaction pathways involving quantum tunneling of protons are fundamental to chemistry and biology. They are responsible for essential aspects of interstellar synthesis, the degradation and isomerization of compounds, enzymatic activity, and protein dynamics. On-surface conditions have been demonstrated to open alternative routes for organic synthesis, often with intricate transformations not accessible in solution.
View Article and Find Full Text PDFSurface-confined covalent coupling reactions of the linear compound 4-(but-3-en-1-ynyl)-4'-ethynyl-1,1'-biphenyl (1), which contains one alkyne and one enyne group on opposing ends, have been investigated using scanning tunneling microscopy (STM) and density functional theory (DFT) calculations. The reactions show a surface-dependent chemoselectivity: on Au(111), compound 1 preferentially yields cyclotrimerization products, while on Cu(111), a selective coupling between the enyne and alkyne groups is observed. Linear, V-shaped string formations combined with Y-shaped bifurcation motifs result in a random reticulation on the entire surface.
View Article and Find Full Text PDFExtended organometallic honeycomb alkynyl-silver networks have been synthesized on a noble metal surface under ultrahigh vacuum conditions via a gas-mediated surface reaction protocol. Specifically, the controlled exposure to molecular oxygen efficiently deprotonates terminal alkyne moieties of 1,3,5-tris(4-ethynylphenyl)benzene (Ext-TEB) precursors adsorbed on Ag(111). At T = 200 K, this O-mediated reaction pathway features high chemoselectivity without poisoning the surface.
View Article and Find Full Text PDF