Background: HEAT and ARM repeats occur in a large number of eukaryotic proteins. As these repeats are often highly diverged, the prediction of HEAT or ARM domains can be challenging. Except for the most clear-cut cases, identification at the individual repeat level is indispensable, in particular for determining domain boundaries.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
November 2001
The molecular bases of circadian clocks are complex and cannot be sufficiently explained by the relatively simple feedback loops, based on transcription and translation, of current models. The existence of additional oscillators has been demonstrated experimentally, but their mechanism(s) have so far resisted elucidation and any universally conserved clock components have yet to be identified. The fission yeast, Schizosaccharomyces pombe, as a simple and well-characterized eukaryote, is a useful model organism in the investigation of many aspects of cell regulation.
View Article and Find Full Text PDFPeriod homeostasis is the defining characteristic of a biological clock. Strict period homeostasis is found for the ultradian clocks of eukaryotic microbes. In addition to being temperature-compensated, the period of these rhythms is unaffected by differences in nutrient composition or changes in other environmental variables.
View Article and Find Full Text PDF