The design and development of particulate photocatalysts has been an attractive strategy to incorporate earth-abundant metal ions to water splitting devices. Herein, we synthesized CoFe-Prussian blue (PB) coated ZnO origami core-shell nanostructures (PB@ZnO) with different mass ratio of PB components and investigated their photocatalytic water oxidation activities in the presence of an electron scavenger. Photocatalytic experiments reveal that the integration of PB on ZnO boosts the oxygen evolution rate by a factor of ~2.
View Article and Find Full Text PDFUnderstanding the interfacial composition in heterostructures is crucial for tailoring heterogenous electrochemical and photoelectrochemical processes. This work aims to elucidate the structure of a series of Co-Fe Prussian blue analogue modified ZnO (PBA/ZnO) electrodes with interface-sensitive vibrational sum frequency generation (VSFG) spectroscopy. Our measurements revealed, for the first time, a cyanide linkage isomerism at the PBA/ZnO interface, when the composite is fabricated at elevated temperatures.
View Article and Find Full Text PDFThis study presents a pioneering semiconductor-catalyst core-shell architecture designed to enhance photocatalytic water oxidation activity significantly. This innovative assembly involves the in situ deposition of CoFe Prussian blue analogue (PBA) particles onto SrTiO (STO) and blue SrTiO (bSTO) nanocubes, effectively establishing a robust p-n junction, as demonstrated by Mott-Schottky analysis. Of notable significance, the STO/PB core-shell catalyst displayed remarkable photocatalytic performance, achieving an oxygen evolution rate of 129.
View Article and Find Full Text PDFDerivation of 3D coordination polymers to produce active catalysts has been a feasible strategy to achieve a precise coordination sphere for the catalytic site. This study demonstrates the partial conversion of a 3D cobalt dicyanamide coordination polymer, Co-dca, to a 2D layered hydroxide-oxyhydroxide structure under photocatalytic conditions. The catalyst exhibits an activity as high as 28.
View Article and Find Full Text PDFWe report the step-by-step synthesis of a precious metal-free acceptor-chromophore-relay-catalyst tetrad assembly that exhibits a turnover frequency (TOF) of 7.5 × 10 s under neutral conditions. Transient absorption spectroscopic studies indicate that upon fullerenol incorporation into the investigated complexes, charge separation efficiency increases considerably.
View Article and Find Full Text PDF