Publications by authors named "F Kappeler"

Asymptotic giant branch stars are responsible for the production of most of the heavy isotopes beyond Sr observed in the solar system. Among them, isotopes shielded from the r-process contribution by their stable isobars are defined as s-only nuclei. For a long time the abundance of ^{204}Pb, the heaviest s-only isotope, has been a topic of debate because state-of-the-art stellar models appeared to systematically underestimate its solar abundance.

View Article and Find Full Text PDF

^{140}Ce(n,γ) is a key reaction for slow neutron-capture (s-process) nucleosynthesis due to being a bottleneck in the reaction flow. For this reason, it was measured with high accuracy (uncertainty ≈5%) at the n_TOF facility, with an unprecedented combination of a high purity sample and low neutron-sensitivity detectors. The measured Maxwellian averaged cross section is up to 40% higher than previously accepted values.

View Article and Find Full Text PDF

Neutron capture reaction cross sections on Ge are of importance to determine Ge production during the astrophysical slow neutron capture process. We present new resonance data on Ge( ) reactions below 70 keV neutron energy. We calculate Maxwellian averaged cross sections, combining our data below 70 keV with evaluated cross sections at higher neutron energies.

View Article and Find Full Text PDF

Considering the high and increasing prevalence of stress, approaches to mitigate stress-related biological processes become a matter of public health. Since supportive social interactions contribute substantially to mental and physical health, we set out to develop a social support stress management intervention and examined its effects on psychophysiological stress responses as well as self-reported stress in healthy women. In a parallel-group randomized controlled trial, registered in the DSRK (DRKS00017427), 53 healthy women were randomly assigned to a social support stress management or a waitlist control condition.

View Article and Find Full Text PDF

The neutron capture cross sections of several unstable nuclides acting as branching points in the s process are crucial for stellar nucleosynthesis studies. The unstable ^{171}Tm (t_{1/2}=1.92  yr) is part of the branching around mass A∼170 but its neutron capture cross section as a function of the neutron energy is not known to date.

View Article and Find Full Text PDF