Publications by authors named "F K Zhang"

To investigate the efficacy and safety of picosecond (PS) and nanosecond (NS) 1064-nm neodymium-doped yttrium aluminum garnet (Nd: YAG) laser in treating Café-au-lait macules (CALMs). We retrospectively analyzed the medical records of patients with CALMs, who were treated with PS or NS 1064-nm lasers from January 2020 to January 2022. The efficacy was determined based on the before and after pictures by two independent investigators.

View Article and Find Full Text PDF

Inotuzumab ozogamicin (InO) is approved for treatment of relapsed/refractory acute lymphoblastic leukemia (R/R ALL). Previous studies reported higher rates of post- hematopoietic stem cell transplant (HSCT) hepatic sinusoidal obstruction syndrome (SOS) in patients receiving InO versus chemotherapy prior to HSCT. It is unknown if a lower InO dose would reduce risk of post-HSCT SOS or if it would impact efficacy.

View Article and Find Full Text PDF

Myocardial fibrosis (MF) is a common pathological manifestation of many cardiovascular diseases, such as myocardial infarction, myocardial ischemia, and sudden cardiac death. It is characterized by excessive proliferation and activation of fibroblasts, transformation into myofibroblasts, and, eventually, excessive deposition of the extracellular matrix, resulting in heart damage. Currently, modern drugs such as angiotensin-converting enzyme inhibitors, diuretics, and β-blockers can improve myocardial fibrosis in clinical treatment, but their therapeutic effect on this disease is limited, with obvious side effects and high cost.

View Article and Find Full Text PDF

Introduction: Nutrition during pregnancy significantly impacts maternal and birth outcomes. A key factor contributing to the rise in adverse maternal and birth outcomes is poor nutrition. Produce prescription programs have the potential to address pregnancy-related adverse outcomes such as hypertensive disorders and gestational diabetes, but scientific evidence is limited.

View Article and Find Full Text PDF

Microbially induced calcium carbonate precipitation (MICP) has emerged as a promising technique for environmental remediation, particularly for heavy metal removal. This study explores the potential of MICP for Cr(iii) removal, analyzing the effects of temperature, pH, calcium source addition, and initial Cr(iii) concentration on removal efficiency. The results show that Cr(iii) can be efficiently removed with a removal rate approaching 100% under optimal conditions (25 °C, pH 7.

View Article and Find Full Text PDF