Publications by authors named "F K Sharipov"

The potential energy curves (PECs) for the homonuclear He-He, Ar-Ar, Cu-Cu, and Si-Si dimers, as well as heteronuclear Cu-He, Cu-Ar, Cu-Xe, Si-He, Si-Ar, and Si-Xe dimers, are obtained in quantum Monte Carlo (QMC) calculations. It is shown that the QMC method provides the PECs with an accuracy comparable with that of the state-of-the-art coupled cluster singles and doubles with perturbative triples corrections [CCSD(T)] calculations. The QMC data are approximated by the Morse long range (MLR) and (12-6) Lennard-Jones (LJ) potentials.

View Article and Find Full Text PDF

The transport coefficients such as viscosity, thermal conductivity, diffusion and thermal diffusion of neon, argon, krypton, and xenon are computed for a wide range of temperatures taking into consideration their real isotopic compositions. A new concept of isotopic thermal diffusion factor is introduced and calculated. The Chapman-Enskog method based on the 10th order approximation with respect to the Sonine polynomial expansion is applied.

View Article and Find Full Text PDF

Hypothesis: Direct contact membrane distillation (DCMD) processes exploit water-repellant membranes to desalt warm seawaters by allowing only water vapor to transport across. While perfluorinated membranes/coatings are routinely used for DCMD, their vulnerability to abrasion, heat, and harsh chemicals necessitates alternatives, such as ceramics. Herein, we systematically assess the potential of ceramic membranes consisting of anodized aluminum oxide (AAO) for DCMD.

View Article and Find Full Text PDF

The viscosity, thermal conductivity, diffusion coefficient, and thermal diffusion factor of helium-neon mixtures at low density are calculated for a wide range of temperature and for various molar fractions. The Chapman-Enskog method is employed considering the 10th order of the Sonine polynomial expansion. Ab initio potentials for intermolecular interactions are used to calculate the omega-integrals.

View Article and Find Full Text PDF

We review values of the temperature jump coefficient determined from measurements of the acoustic resonance frequencies of helium-filled and argon-filled, spherical cavities near ambient temperature. We combine these values of with literature data for tangential momentum accommodation coefficient (TMAC) and the Cercignani-Lampis model of the gas-surface interaction to obtain measurement-derived values of the normal energy accommodation coefficient (NEAC). We found that NEAC ranges from 0 to 0.

View Article and Find Full Text PDF