Mechanochemistry is a promising approach for chemical recycling of commodity plastics, and in some cases depolymerization to the monomer(s) has been reported. However, while poly(olefin)s comprise the largest share of global commodity plastics, mechanochemical depolymerization of these polymers in standard laboratory-scale ball mill reactors suffers from slow rates. In this work, the observed reactivities of poly(styrene), poly(ethylene) and poly(propylene) are rationalized on the basis of thermodynamic limitations of their depolymerization by depropagation of free radical intermediates.
View Article and Find Full Text PDFBiomacromolecules
June 2024
The dual concepts of monomer equilibrium and monomer transport in emulsion and miniemulsion polymerization are discussed in depth. The concepts must be considered together since, first, dispersed-phase polymerizations (in this case emulsion and miniemulsion polymerizations) are by their nature multiphase systems that function only due to interphase mass transfer; and second, because phase equilibrium determines the driving force for monomer transport in these (and all heterophase reaction) systems. Concepts of polymer particle swelling are reviewed, and the question first addressed by Paul Flory in the 1950s: is revisited in detail.
View Article and Find Full Text PDFSynthetic polyolefinic plastics comprise one of the largest shares of global plastic waste, which is being targeted for chemical recycling by depolymerization to monomers and small molecules. One promising method of chemical recycling is solid-state depolymerization under ambient conditions in a ball-mill reactor. In this paper, we elucidate kinetic phenomena in the mechanochemical depolymerization of poly(styrene).
View Article and Find Full Text PDFA comprehensive overview of the fundamentals of emulsion polymerization and related processes is presented with the object of providing theoretical and practical understanding to researchers considering use of these methods for synthesis of polymer colloids across a wide range of applications. Hence, the overview has been written for a general scientific audience with no prior knowledge assumed. Succinct introductions are given to key topics of background science to assist the reader.
View Article and Find Full Text PDFIn this work, we introduce a kinetic model to study the effectiveness of ester-mediated amide bond formation under prebiotic conditions. In our previous work, we found that a simple system composed of α-hydroxy acids and α-amino acids is capable of forming peptide bonds via esterification followed by the ester-amide exchange reaction. To further understand the kinetic behavior of this copolymerization, we first tracked the growth of initial species from a valine/lactic acid mixture in a closed system reactor.
View Article and Find Full Text PDF