Background: Digitally Enhanced Hands-on Surgical Training (DEHST) platform was introduced to overcome the lack of training capabilities for the challenging task of freehand distal interlocking of intramedullary nails. It demonstrates high perceived realism for surgeons, and novices perform significantly better after DEHST training. However, characterization of how performance improves remained unexplored.
View Article and Find Full Text PDFIntroduction: According to current clinical practice, a minimum of 7 knots are required to provide secure hold in high-strength sutures. A new technology featuring a suture tape with a salt-infused silicon core has been recently developed, potentially reducing the number of needed knots.
Aims: to (1) assess the influence of number of knots on tape security, (2) evaluate the effect of different ambient conditions on knot security, and (3) compare the biomechanical competence of the novel versus a conventional suture tape.
Helical plates used for proximal humeral shaft fracture fixation avoid the radial nerve distally as compared to straight plates. To investigate in a human cadaveric model the biomechanical competence of straight lateral plates versus 45° helical plates used for fixation of proximal comminuted humeral shaft fractures, eight pairs of human cadaveric humeri were instrumented using either a long straight PHILOS plate (Group 1) or a 45° helical plate (Group 2) for treatment of an unstable proximal humeral shaft fracture. All specimens were tested under non-destructive quasi-static loading in axial compression, internal and external rotation, and bending in four directions.
View Article and Find Full Text PDF