Publications by authors named "F J Unda"

Background And Aim: Human dental pulp stem cells (hDPSCs) constitute a promising alternative for central nervous system (CNS) cell therapy. Unlike other human stem cells, hDPSCs can be differentiated, without genetic modification, to neural cells that secrete neuroprotective factors. However, a better understanding of their real capacity to give rise to functional neurons and integrate into synaptic networks is still needed.

View Article and Find Full Text PDF
Article Synopsis
  • Lignin, a key polymer in plant cell walls, can incorporate various phenolic monomers to improve biomass digestibility, and this study focuses on enhancing the incorporation of ferulate into lignin.
  • Researchers overexpressed the rice enzyme OsFMT1 in hybrid poplar, resulting in transgenic trees with increased levels of ferulate and other compounds in their lignin, which was verified through advanced spectroscopy and analysis.
  • The study concludes that OsFMT1 has superior substrate specificity and catalytic efficiency compared to a related enzyme, making it a promising candidate for improving the processing of lignocellulosic biomass.
View Article and Find Full Text PDF

Tooth formation is a process tightly regulated by reciprocal interactions between epithelial and mesenchymal tissues. These epithelial-mesenchyme interactions regulate the expression of target genes via transcription factors. Among the regulatory elements governing this process, Epiprofin/Sp6 is a zinc finger transcription factor which is expressed in the embryonic dental epithelium and in differentiating pre-odontoblasts.

View Article and Find Full Text PDF

Building sustainable platforms to produce biofuels and specialty chemicals has become an increasingly important strategy to supplement and replace fossil fuels and petrochemical-derived products. Terpenoids are the most diverse class of natural products that have many commercial roles as specialty chemicals. Poplar is a fast growing, biomassdense bioenergy crop with many species known to produce large amounts of the hemiterpene isoprene, suggesting an inherent capacity to produce significant quantities of other terpenes.

View Article and Find Full Text PDF

During autumn, decreasing photoperiod and temperature temporarily perturb the balance between carbon uptake and carbon demand in overwintering plants, requiring coordinated adjustments in photosynthesis and carbon allocation to re-establish homeostasis. Here we examined adjustments of photosynthesis and allocation of nonstructural carbohydrates (NSCs) following a sudden shift to short photoperiod, low temperature, and/or elevated CO in Pinus strobus seedlings. Seedlings were initially acclimated to 14 h photoperiod (22/15°C day/night) and ambient CO (400 ppm) or elevated CO (800 ppm).

View Article and Find Full Text PDF