Publications by authors named "F J Pavinatto"

Medical training simulations that utilize 3D-printed, patient-specific tissue models improve practitioner and patient understanding of individualized procedures and capacitate pre-operative, patient-specific rehearsals. The impact of these novel constructs in medical training and pre-procedure rehearsals has been limited, however, by the lack of effectively embedded sensors that detect the location, direction, and amplitude of strains applied by the practitioner on the simulated structures. The monolithic fabrication of strain sensors embedded into lifelike tissue models with customizable orientation and placement could address this limitation.

View Article and Find Full Text PDF

A new approach to stable, low resistance inexpensive printed flexible conductive inks is proposed. Silver inks have been extensively studied and commercialized for applications in printed electronics due to the inherent high conductivity and stability of silver, even in particulate-based percolation networks processed at temperatures compatible with low-cost polymer films such as poly(ethylene terephthalate) (PET). Recent interest in flexible and even stretchable circuits, however, has presented new challenges for particle-based inks as mechanical strains can result in the opening of critical particle-to-particle contacts.

View Article and Find Full Text PDF

Membrane structure is a key factor for the cell`s physiology, pathology, and therapy. Evaluating the importance of lipid species such as N-nervonoyl sphingomyelin (24:1-SM) -able to prevent phase separation- to membrane structuring remains a formidable challenge. This is the first report in which polarization-modulated infrared reflection-absorption spectroscopy (PM-IRRAS) is applied to investigate the lipid-lipid interactions in 16:0 vs 24:1-SM monolayers and their mixtures with 1,2-Dioleoyl-sn-glycero-3-phosphocholine (DOPC) and cholesterol (Chol) (DOPC/SM/Chol 2:1:1).

View Article and Find Full Text PDF

Uropathogenic strains of Escherichia coli produce virulence factors, such as the protein toxin alpha-hemolysin (HlyA), that enable the bacteria to colonize the host and establish an infection. HlyA is synthetized as a protoxin (ProHlyA) that is transformed into the active form in the bacterial cytosol by the covalent linkage of two fatty-acyl moieties to the polypeptide chain before the secretion of HlyA into the extracellular medium. The aim of this work was to investigate the effect of the fatty acylation of HlyA on protein conformation and protein-membrane interactions.

View Article and Find Full Text PDF

The interaction between chitosans and Langmuir monolayers mimicking cell membranes has been explained with an empirical scheme based on electrostatic and hydrophobic forces, but so far this has been tested only for dimyristoyl phosphatidic acid (DMPA). In this paper, we show that the mode of action in such a scheme is also valid for dipalmitoyl phosphatidyl choline (DPPC) and dipalmitoyl phosphatidyl glycerol (DPPG), whose monolayers were expanded and their compressibility modulus decreased by interacting with chitosans. In general, the effects were stronger for the negatively charged DPPG in comparison to DPPC, and for the low molecular weight chitosan (LMWChi) which was better able to penetrate into the hydrophobic chains than the high molecular weight chitosan (Chi).

View Article and Find Full Text PDF