Non-coding RNAs (crRNAs) produced from clustered regularly interspaced short palindromic repeats (CRISPR) loci and CRISPR-associated (Cas) proteins of the prokaryotic CRISPR-Cas systems form complexes that interfere with the spread of transmissible genetic elements through Cas-catalysed cleavage of foreign genetic material matching the guide crRNA sequences. The easily programmable targeting of nucleic acids enabled by these ribonucleoproteins has facilitated the implementation of CRISPR-based molecular biology tools for in vivo and in vitro modification of DNA and RNA targets. Despite the diversity of DNA-targeting Cas nucleases so far identified, native and engineered derivatives of the Streptococcus pyogenes SpCas9 are the most widely used for genome engineering, at least in part due to their catalytic robustness and the requirement of an exceptionally short motif (5'-NGG-3' PAM) flanking the target sequence.
View Article and Find Full Text PDFThe Cas1 protein is essential for the functioning of CRISPR-Cas adaptive systems. However, despite the high prevalence of CRISPR-Cas systems in thermophilic microorganisms, few studies have investigated the occurrence and diversity of Cas1 across hot spring microbial communities. Phylogenomic analysis of 2,150 Cas1 sequences recovered from 48 metagenomes representing hot springs (42-80°C, pH 6-9) from three continents, revealed similar ecological diversity of Cas1 and 16S rRNA associated with geographic location.
View Article and Find Full Text PDFA long time has passed since regularly interspaced DNA repeats were discovered in prokaryotes. Today, those enigmatic repetitive elements termed clustered regularly interspaced short palindromic repeats (CRISPR) are acknowledged as an emblematic part of multicomponent CRISPR-Cas (CRISPR associated) systems. These systems are involved in a variety of roles in bacteria and archaea, notably, that of conferring protection against transmissible genetic elements through an adaptive immune-like response.
View Article and Find Full Text PDFThe number and diversity of known CRISPR-Cas systems have substantially increased in recent years. Here, we provide an updated evolutionary classification of CRISPR-Cas systems and cas genes, with an emphasis on the major developments that have occurred since the publication of the latest classification, in 2015. The new classification includes 2 classes, 6 types and 33 subtypes, compared with 5 types and 16 subtypes in 2015.
View Article and Find Full Text PDF