Our previous work has demonstrated that the insulin-like growth factors (IGFs), acting through a single receptor, stimulate both proliferation and differentiation of L6A1 myoblasts. This unique model system has enabled us to closely examine the switch that regulates these two opposing responses. We have previously shown, using specific inhibitors of the IGF-I signal transduction pathway, that the mitogenic response is mediated by the Ras/Raf/MAP kinase pathway and the myogenic response by the PI 3-kinase/p70s6k pathway (Coolican SA, Samuel DS, Ewton DZ, McWade FJ, Florini JR, J Biol Chem 1997; 272: 6653-62).
View Article and Find Full Text PDFIt is well established that mitogens inhibit differentiation of skeletal muscle cells, but the insulin-like growth factors (IGFs), acting through a single receptor, stimulate both proliferation and differentiation of myoblasts. Although the IGF-I mitogenic signaling pathway has been extensively studied in other cell types, little is known about the signaling pathway leading to differentiation in skeletal muscle. By using specific inhibitors of the IGF signal transduction pathway, we have begun to define the signaling intermediates mediating the two responses to IGFs.
View Article and Find Full Text PDFMitogens are generally thought to inhibit myogenesis, and many cell biologists have found it hard to interpret observations that the insulin-like growth factors (IGFs) stimulate both proliferation and differentiation of muscle cells in culture. Our previous studies suggested that the Type I IGF receptor mediates these actions. However, IGF-II and insulin treatment caused myoblasts to differentiate much more extensively, suggesting that more complex mechanisms may be involved.
View Article and Find Full Text PDF