Aerosol deposition (AD) is a thick-film deposition process that can produce layers up to several hundred micrometers thick with densities greater than 95% of the bulk. The primary advantage of AD is that the deposition takes place entirely at ambient temperature; thereby enabling film growth in material systems with disparate melting temperatures. This report describes in detail the processing steps for preparing the powder and for performing AD using the custom-built system.
View Article and Find Full Text PDFWe demonstrate three possible scenarios for upgrading current single-mode transmission networks with high capacity few-mode fiber technology using mode-division multiplexing (MDM). The results were obtained from measurements over a number of field-deployed single-mode fiber links with an additional experimental in-line amplified few-mode fiber link. The results confirm the viability of employing MDM using few-mode fiber technology to gradually replace legacy optical systems.
View Article and Find Full Text PDFTo make graphene technologically viable, the transfer of graphene films to substrates appropriate for specific applications is required. We demonstrate the dry transfer of epitaxial graphene (EG) from the C-face of 4H-SiC onto SiO(2), GaN and Al(2)O(3) substrates using a thermal release tape. Subsequent Hall effect measurements illustrated that minimal degradation in the carrier mobility was induced following the transfer process in lithographically patterned devices.
View Article and Find Full Text PDFGallium arsenide (GaAs) metal-semiconductor-metal (MSM) photodetectors have unique properties including high-bandwidth, linearity, and biphase response that make them suitable as mixers and programmable weights for microwave and communications applications. An optical technique for microwave single-sideband modulation that uses GaAs MSM photodiodes as mixers is reported. It uses MSM Schottky photodiodes formed in a GaAs/Al(0.
View Article and Find Full Text PDFNew planar GaAs heterojunction bipolar phototransistors have been designed and demonstrated. The devices use a GaAs/Al(0.3)Ga(0.
View Article and Find Full Text PDF