Publications by authors named "F J Johannes"

How long-lived trees escape "mutational meltdown" despite centuries of continuous growth remains puzzling. Here we integrate recent studies to show that the yearly rate of somatic mutations and epimutations (μY) scales inversely with generation time (G), and follows the same allometric power law found in mammals (μY ∝ G-1). Deeper insights into the scaling function may permit predictions of somatic (epi)mutation rates from life-history traits without the need for genomic data.

View Article and Find Full Text PDF

Gene regulation in eukaryotes is partly shaped by the 3D organization of chromatin within the cell nucleus. Distal interactions between -regulatory elements and their target genes are widespread, and many causal loci underlying heritable agricultural traits have been mapped to distal non-coding elements. The biology underlying chromatin loop formation in plants is poorly understood.

View Article and Find Full Text PDF

With the availability of high-quality full genome polymorphism (SNPs) data, it becomes feasible to study the past demographic and selective history of populations in exquisite detail. However, such inferences still suffer from a lack of statistical resolution for recent, for example bottlenecks, events, and/or for populations with small nucleotide diversity. Additional heritable (epi)genetic markers, such as indels, transposable elements, microsatellites, or cytosine methylation, may provide further, yet untapped, information on the recent past population history.

View Article and Find Full Text PDF

For over a decade, the animal field has led the way in using DNA methylation measurements to construct epigenetic clocks of aging. These clocks can predict organismal age with a level of accuracy that surpasses any other molecular proxy known to date. Evidence is finally emerging that epigenetic clocks also exist in plants.

View Article and Find Full Text PDF

Plant architecture is shaped by the production of new organs, most of which emerge postembryonically. This process includes the formation of new lateral branches along existing shoots. Current evidence supports a detached-meristem model as the cellular basis of lateral shoot initiation.

View Article and Find Full Text PDF