Publications by authors named "F J Castillo"

High-energy nuclear collisions create a quark-gluon plasma, whose initial condition and subsequent expansion vary from event to event, impacting the distribution of the eventwise average transverse momentum [P([p_{T}])]. Disentangling the contributions from fluctuations in the nuclear overlap size (geometrical component) and other sources at a fixed size (intrinsic component) remains a challenge. This problem is addressed by measuring the mean, variance, and skewness of P([p_{T}]) in ^{208}Pb+^{208}Pb and ^{129}Xe+^{129}Xe collisions at sqrt[s_{NN}]=5.

View Article and Find Full Text PDF

Purpose: This study explores the use of deep generative models to create synthetic ultrasound images for the detection of hemarthrosis in hemophilia patients. Addressing the challenge of sparse datasets in rare disease diagnostics, the study aims to enhance AI model robustness and accuracy through the integration of domain knowledge into the synthetic image generation process.

Methods: The study employed two ultrasound datasets: a base dataset (Db) of knee recess distension images from non-hemophiliac patients and a target dataset (Dt) of hemarthrosis images from hemophiliac patients.

View Article and Find Full Text PDF

The ubiquitin E2 variant domain of TSG101 (TSG101-UEV) plays a pivotal role in protein sorting and virus budding by recognizing PTAP motifs within ubiquitinated proteins. Disruption of TSG101-UEV/PTAP interactions has emerged as a promising strategy for the development of host-oriented broad-spectrum antivirals with low susceptibility to resistance. TSG101 is a challenging target characterized by an extended and flat binding interface, low affinity for PTAP ligands, and complex binding energetics.

View Article and Find Full Text PDF

Uncontrolled regeneration leads to neoplastic transformation. The intestinal epithelium requires precise regulation during continuous homeostatic and damage-induced tissue renewal to prevent neoplastic transformation, suggesting that pathways unlinking tumour growth from regenerative processes must exist. Here, by mining RNA-sequencing datasets from two intestinal damage models and using pharmacological, transcriptomics and genetic tools, we identified liver X receptor (LXR) pathway activation as a tissue adaptation to damage that reciprocally regulates intestinal regeneration and tumorigenesis.

View Article and Find Full Text PDF