This study compares sulfate-reduction performance in an anaerobic sludge with different carbon sources (ethanol, acetate, and glucose). Also, the toxic effect of copper was evaluated to assess its feasibility for possible acid mine drainage (AMD) treatment. Serological bottles with 1.
View Article and Find Full Text PDFWater Sci Technol
November 2005
Refinery spent caustics (SC) were diluted with sour waters (SW) in a ratio 1:7, neutralized with CO2 (SC/SW(CO2)) and 83% of H2S was striped during this procedure, remaining an aromatic portion that contained 2123, 2730 and 1379 mg L(-1) of phenol, p-cresol and o-cresol, respectively. The mixture was teated anaerobically in an EGSB reactor fed with 1.5 gCOD L(-1) d(-1), without mineral supplements causing loss of COD removal efficiency that dropped to 23%, methane production ceased and no phenol or cresols were biodegraded.
View Article and Find Full Text PDFThe degradation of of lineal alkylbenzene sulphonate (LAS) was studied in a two-stage anaerobic system where the acidogenic reactor was bioaugmented with a strain of Pseudomonas aeruginosa (M113). This is a strain, which under aerobic and denitrifying conditions uses LAS as carbon source. Results show that LAS was only degraded within the acidogenic stage while in the methanogenic reactor there was no degradation and eventually there was an inhibition due to a LAS accumulation in the sludge.
View Article and Find Full Text PDF