Publications by authors named "F Isensee"

Semantic segmentation is an essential component of medical image analysis research, with recent deep learning algorithms offering out-of-the-box applicability across diverse datasets. Despite these advancements, segmentation failures remain a significant concern for real-world clinical applications, necessitating reliable detection mechanisms. This paper introduces a comprehensive benchmarking framework aimed at evaluating failure detection methodologies within medical image segmentation.

View Article and Find Full Text PDF

Targeted (nano-)drug delivery is essential for treating respiratory diseases, which are often confined to distinct lung regions. However, spatio-temporal profiling of drugs or nanoparticles (NPs) and their interactions with lung macrophages remains unresolved. Here, we present LungVis 1.

View Article and Find Full Text PDF

Increasing evidence shows that flaws in machine learning (ML) algorithm validation are an underestimated global problem. In biomedical image analysis, chosen performance metrics often do not reflect the domain interest, and thus fail to adequately measure scientific progress and hinder translation of ML techniques into practice. To overcome this, we created Metrics Reloaded, a comprehensive framework guiding researchers in the problem-aware selection of metrics.

View Article and Find Full Text PDF

Validation metrics are key for tracking scientific progress and bridging the current chasm between artificial intelligence research and its translation into practice. However, increasing evidence shows that, particularly in image analysis, metrics are often chosen inadequately. Although taking into account the individual strengths, weaknesses and limitations of validation metrics is a critical prerequisite to making educated choices, the relevant knowledge is currently scattered and poorly accessible to individual researchers.

View Article and Find Full Text PDF

Objective: To automate the generation of three validated nephrometry scoring systems on preoperative computerised tomography (CT) scans by developing artificial intelligence (AI)-based image processing methods. Subsequently, we aimed to evaluate the ability of these scores to predict meaningful pathological and perioperative outcomes.

Patients And Methods: A total of 300 patients with preoperative CT with early arterial contrast phase were identified from a cohort of 544 consecutive patients undergoing surgical extirpation for suspected renal cancer.

View Article and Find Full Text PDF