An exhaustive analysis was performed on more than 2000 microbiotas from French Protected Designation of Origin (PDO) cheeses, covering most cheese families produced throughout the world. Thanks to a complete and accurate set of associated metadata, we have carried out a deep analysis of the ecological drivers of microbial communities in milk and "terroir" cheeses. We show that bacterial and fungal microbiota from milk differed significantly across dairy species while sharing a core microbiome consisting of four microbial species.
View Article and Find Full Text PDFPreserving microbial ecosystems obtained from traditional cheese-making processes is crucial to safeguarding the biodiversity of microbial cheese communities and thus ensuring that the high flavor quality of traditional cheeses is maintained. Few protocols have been proposed for the long-term storage of microbial consortia. This work aimed to develop preservation methods to stabilize the entire microbial community in smear-ripened cheese without multiplication or isolation.
View Article and Find Full Text PDFInt J Syst Evol Microbiol
January 2024
Eight Gram-stain-negative bacterial strains were isolated from cheese rinds sampled in France. On the basis of 16S rRNA gene sequence analysis, all isolates were assigned to the genus s. Phylogenetic investigations, including 16S rRNA gene studies, multilocus sequence analysis, reconstruction of a pan-genome phylogenetic tree with the concatenated core-genome content and average nucleotide identity (ANI) calculations, revealed that they constituted three novel and well-supported clusters.
View Article and Find Full Text PDFIn recent years, the food industry has expended considerable effort to design novel products that replace animal proteins with legumes; however, the actual environmental benefits of such products are often not quantified. Here, we performed Life Cycle Assessments (LCA) to evaluate the environmental performance of four new fermented food products based on different mixtures of animal (cow milk) and plant (pea) protein sources (100% Pea, 75% Pea-25% Milk, 50% Pea-50% Milk, 25% Pea-75% Milk). The system perimeter encompassed all stages from agricultural production of the ingredients to the creation of the final ready-to-eat products.
View Article and Find Full Text PDFMoving to a more sustainable food system requires increasing the proportion of plant protein in our diet. Fermentation of plant product could thus be used to develop innovative and tasty food products. We investigated the impact of fermentation by synthetic microbial consortia (SMC) on the perception of pea protein-based gels, giving possible keys to better understand the origin of sensory perception (e.
View Article and Find Full Text PDF© LitMetric 2025. All rights reserved.