Objective: Biochemical and cytological pericardial fluid (PF) analysis is essentially based on the knowledge of pleural fluid composition. The aim of the present study is to identify reference intervals (RIs) for PF according to state-of-art methodological standards.
Methods: We prospectively collected and analysed the PF and venous blood of consecutive subjects undergoing elective open-heart surgery from July 2017 to October 2018.
Combination of micro-focus computed tomography (micro-CT) in conjunction with in situ mechanical testing and digital volume correlation (DVC) can be used to access the internal deformation of materials and structures. DVC has been exploited over the past decade to measure complex deformation fields within biological tissues and bone-biomaterial systems. However, before adopting it in a clinically-relevant context (i.
View Article and Find Full Text PDFDigital Volume Correlation (DVC) has become popular for measuring the strain distribution inside bone structures. A number of methodological questions are still open: the reliability of DVC to investigate augmented bone tissue, the variability of the errors between different specimens of the same type, the distribution of measurement errors inside a bone, and the possible presence of preferential directions. To address these issues, five augmented and five natural porcine vertebrae were subjected to repeated zero-strain micro-CT scan (39μm voxel size).
View Article and Find Full Text PDFDrug-eluting vascular prostheses represent a new direction in vascular surgery to reduce early thrombosis and late intimal hyperplasia for small calibre grafts. Subcutaneous implantation in rats is a rapid and cost-effective screening model to assess the drug-elution effect and could, to some extent, be useful to forecast results for vascular prostheses. We compared biological and histological responses to scaffolds in different implantation sites.
View Article and Find Full Text PDF