The purpose of this study was to investigate radiation doses in cerebral perfusion computed tomography (CT) examination. As a part of routine patient monitoring, data were collected on patients in terms of the skin dose and CT dose index (CTDIvol) and dose-length product (DLP) values. For the estimation of the dose to the lens a phantom study was performed.
View Article and Find Full Text PDFAJNR Am J Neuroradiol
August 1999
Background And Purpose: T1-, T2-, and proton density (PD)-weighted sequences are used to characterize the content of cystic intracranial lesions. Fluid-attenuated inversion recovery (FLAIR) MR sequences produce T2-weighted images with water signal saturation. Therefore, we attempted to verify whether FLAIR, as compared with conventional techniques, improves the distinction between intracranial cysts with a free water-like content versus those filled with a non-free water-like substance and, consequently, aids in the identification of these lesions as either neoplastic/inflammatory or maldevelopmental/porencephalic.
View Article and Find Full Text PDF