Fluorescence spectroscopy and related techniques benefit from exceptional sensitivity and have become engrained in a variety of fields from biosciences to materials sciences. Measuring time-domain fluorescence decays is nowadays a routine task in many laboratories across these different fields. Perhaps surprisingly, a correct data analysis of these fluorescence decay curves presents a formidable challenge and requires extensive insight in the problems associated with fitting this type of data.
View Article and Find Full Text PDFPurpose: Up to 50% of high-risk non-muscle invasive bladder cancer (HR-NMIBC) patients fail Bacillus Calmette-Guérin (BCG) treatment, resulting in a high risk of progression and poor clinical outcomes. Biomarkers that predict outcomes after BCG are lacking. The antitumor effects of BCG are driven by a cytotoxic T cell response, which may be controlled by immune checkpoint proteins like Programmed Death Ligand 1 (PD-L1).
View Article and Find Full Text PDFBackground: High-risk non-muscle invasive bladder cancer (HR-NMIBC) patients require long-term surveillance with cystoscopies, cytology and upper tract imaging. Previously, we developed a genomic urine assay for surveillance of HR-NMIBC patients with high sensitivity and anticipatory value.
Objective: We aimed to validate the performance of the assay in an unselected prospectively collected cohort of HR-NMIBC patients under surveillance.
Purpose: The Genomic Analysis of High-Risk Non-Muscle-Invasive Bladder Cancer (GARNER) study investigated FGFR alteration (ALT) frequency and the clinical outcome relationship with Bacillus Calmette-Guérin (BCG) treatment in high-risk non-muscle-invasive bladder cancer (HR-NMIBC). An FGFR predictive response signature (FGFR-PRS) was discovered that identifies patients with an activated FGFR pathway who could potentially benefit from FGFR-targeted therapy beyond those who are FGFR ALT (+).
Experimental Design: Pretreatment tumor samples and clinical data were analyzed from 582 BCG-treated patients with HR-NMIBC.
The global incidence of bladder cancer is more than half a million diagnoses each year. Bladder cancer can be categorized into non-muscle-invasive bladder cancer (NMIBC), which accounts for ~75% of diagnoses, and muscle-invasive bladder cancer (MIBC). Up to 45% of patients with NMIBC develop disease progression to MIBC, which is associated with a poor outcome, highlighting a clinical need to identify these patients.
View Article and Find Full Text PDF