As topological insulators (TIs) are becoming increasingly intriguing, the community is exploring transformative applications that require interfacing TIs with other materials such as ferromagnets or superconductors. Herein, we report on the manifestations of superconducting electrons carried by topological surface states (TSS) in BiSe films. As key signatures of TSS-carried Cooper pairs, we uncover the hysteresis of magnetoresistance (MR) and the switching behavior of anisotropic magnetoresistance (AMR).
View Article and Find Full Text PDFMoS presents a promising low-cost catalyst for the hydrogen evolution reaction (HER), but the understanding about its active sites has remained limited. Here we present an unambiguous study of the catalytic activities of all possible reaction sites of MoS, including edge sites, sulfur vacancies, and grain boundaries. We demonstrate that, in addition to the well-known catalytically active edge sites, sulfur vacancies provide another major active site for the HER, while the catalytic activity of grain boundaries is much weaker.
View Article and Find Full Text PDFThe recent synthesis of the superconductor LaFeAsO(0.89)F(0.11) with transition temperature T(c) approximately 26 K (refs 1-4) has been quickly followed by reports of even higher transition temperatures in related compounds: 41 K in CeFeAsO(0.
View Article and Find Full Text PDFThe distribution of beta 1,2 N-acetylglucosaminyltransferase I (NAGT I), alpha 1,3-1,6 mannosidase II (Mann II), beta 1,4 galactosyltransferase (GalT), alpha 2,6 sialyltransferase (SialylT) was determined by immuno-labelling of cryo-sections from HeLa cell lines. Antibody labelling in the HeLa cell line was made possible by stable expression of epitope-tagged forms of these proteins or forms from species to which specific antibodies were available. NAGT I and Mann II had the same distribution occupying the medial and trans cisternae of the stack.
View Article and Find Full Text PDFThe medial Golgi enzymes, N-acetylglucosaminyltransferase I (NAGT I) and mannosidase II (Mann II), and the trans Golgi enzyme, beta-1,4-galactosyltransferase (GalT) were each retained in the endoplasmic reticulum (ER) by grafting on the cytoplasmic tail of the p33 invariant chain. Transient and stable expression of p33/NAGT I in HeLa cells caused relocation of endogenous Mann II to the ER and transient expression of p33/Mann II had a similar effect on endogenous NAGT I. Neither of these endogenous medial enzymes were affected by transient expression of p33/GalT.
View Article and Find Full Text PDF