Publications by authors named "F Houle"

The successful use of molecular dyes for solar energy conversion requires efficient charge injection, which in turn requires the formation of states with sufficiently long lifetimes (e.g., triplets).

View Article and Find Full Text PDF

microRNAs regulate gene expression through interaction with an Argonaute protein. While some members of this protein family retain an enzymatic activity capable of cleaving RNA molecules complementary to Argonaute-bound small RNAs, the role of the slicer residues in the canonical microRNA pathway is still unclear in animals. To address this, we created Caenorhabditis elegans strains with mutated slicer residues in the endogenous ALG-1 and ALG-2, the only two slicing Argonautes essential for the miRNA pathway in this animal model.

View Article and Find Full Text PDF

The mechanisms of how dyes and catalysts for solar-driven transformations such as water oxidation to form O work have been intensively investigated, however little is known about how their independent photophysical and chemical processes work together. The level of coordination between the dye and the catalyst in time determines the overall water oxidation system's efficiency. In this computational stochastic kinetics study, we have examined coordination and timing for a Ru-based dye-catalyst diad, [P2Ru(4-mebpy-4'-bimpy)Ru(tpy)(OH)], where P2 is 4,4'-bisphosphonato-2,2'-bipyridine, 4-mebpy-4'-bimpy is 4-(methylbipyridin-4'-yl)--benzimid-'-pyridine, a bridging ligand, and tpy is (2,2':6',2''-terpyridine), taking advantage of the extensive data available for both dye and catalyst, and direct studies of the diads bound to a semiconductor surface.

View Article and Find Full Text PDF

microRNAs regulate gene expression through interaction with an Argonaute protein family member. While some members of this protein family retain an enzymatic activity capable of cleaving RNA molecules complementary to Argonaute-bound small RNAs, the role of the slicing activity in the canonical microRNA pathway is still unclear in animals. To address the importance of slicing Argonautes in animals, we created strains, carrying catalytically dead endogenous ALG-1 and ALG-2, the only two slicing Argonautes essential for the miRNA pathway in this animal model.

View Article and Find Full Text PDF