Publications by authors named "F Hess"

Melt-based 3D printing technologies are currently extensively evaluated for research purposes as well as for industrial applications. Classical approaches often require intermediates, which can pose a risk to stability and add additional complexity to the process. The Advanced Melt Drop Deposition (AMDD) technology, is a 3D printing process that combines the principles of melt extrusion with pressure-driven ejection, similar to injection molding.

View Article and Find Full Text PDF

Carbon dioxide hydrogenation to methanol is a key chemical reaction to store energy in chemical bonds, using carbon dioxide as an energy sink. Indium oxide is amongst the most promising candidates for replacing the copper and zinc oxide catalyst, which is industrially applied for syngas mixtures but less idoneous for educts with carbon dioxide due to instability reasons. The polymorph of indium oxide and the operating conditions remain to be optimized for optimal and stable performance.

View Article and Find Full Text PDF

: Decompressive surgery is a potentially life-saving treatment in patients with malignant space-occupying cerebellar infarction. However, there is only limited literature on functional outcomes and complications after surgery. Our aim was to establish markers which predict poor outcome.

View Article and Find Full Text PDF

Purpose: Reverse shoulder arthroplasty (RSA) is a common surgical procedure for elderly patients with proximal humerus fractures. Cement fixation of the humeral stem is considered the gold standard for this procedure. Due to the high prevalence of osteoporosis in this patient population, the risk of intraoperative fractures is increased when uncemented stems are used.

View Article and Find Full Text PDF

Despite its well-known nobility, even platinum is subject to corrosion under the harsh conditions that many technical applications require. Based on the assumption that the platinum loss is mainly caused by the formation of volatile PtO, alloying is a promising strategy to reduce it. This investigation explores the bulk stability of Pt-Au, Pt-Ir, Pt-Re, Pt-W, Pt-Ag, Pt-Rh, Pt-Cu, Pt-Ni and Pt-Co, as well as their oxides, utilizing density functional theory, as well as and literature thermodynamic data.

View Article and Find Full Text PDF