Publications by authors named "F Hernando"

Microbiota could be of interest in the diagnosis of colorectal and non-small cell lung cancer (CRC and NSCLC). However, how the microbial components of tissues and feces reflect each other remains unknown. In this work, our main objective is to discover the degree of correlation between the composition of the tissue microbiota and that of the feces of patients affected by CRC and NSCLC.

View Article and Find Full Text PDF

The application of bacterial metagenomic analysis as a biomarker for cancer detection is emerging. Our aim was to discover gut microbiota signatures with potential utility in the diagnosis of colorectal cancer (CRC) and non-small cell lung cancer (NSCLC). A prospective study was performed on a total of 77 fecal samples from CRC and NSCLC patients and controls.

View Article and Find Full Text PDF

We construct new stabilizer quantum error-correcting codes from generalized monomial-Cartesian codes. Our construction uses an explicitly defined twist vector, and we present formulas for the minimum distance and dimension. Generalized monomial-Cartesian codes arise from polynomials in variables.

View Article and Find Full Text PDF

Interstitial lung diseases (ILDs) constitute a group of more than 200 disorders, with idiopathic pulmonary fibrosis (IPF) being one of the most frequent. Telomere length (TL) shortening causes loss of function of the lung parenchyma. However, little is known about its role as a prognostic factor in ILD patients.

View Article and Find Full Text PDF

At the dawn of the next-generation wireless systems and networks, massive multiple-input multiple-output (MIMO) in combination with leading-edge technologies, methodologies, and architectures are poised to be a cornerstone technology. Capitalizing on its successful integration and scalability within 5G and beyond, massive MIMO has proven its merits and adaptability. Notably, a series of evolutionary advancements and revolutionary trends have begun to materialize in recent years, envisioned to redefine the landscape of future 6G wireless systems and networks.

View Article and Find Full Text PDF