Publications by authors named "F Henrique-Silva"

Objective: This proof-of-concept sequence of in vivo/in vitro studies aimed to unveil the role of acquired enamel pellicle (AEP) engineering with statherin-derived peptide (StN15) on the AEP protein profile, enamel biofilm microbiome in vivo and on enamel demineralization in vitro.

Design: In vivo studies, 10 volunteers, in 2 independent experiments (2 days each), rinsed (10 mL,1 min) with: deionized water (negative control) or 1.88 × 10 M StN15.

View Article and Find Full Text PDF

The objective of this in vitro study was to assess the efficacy of CaneCPI-5, either alone or in combination with various concentrations of sodium trimetaphosphate (TMP) in protecting against initial enamel erosion. A total of 135 bovine enamel specimens were prepared and categorized into nine groups (n/group=15) according to the following treatments: Deionized water; Commercial solution (Elmex Erosion ProtectionTM); 0.1 mg/mL CaneCPI-5; 0.

View Article and Find Full Text PDF

Plastics are very versatile materials that have contributed to the development of society since the 19th century; however, their mismanagement has led to an accumulation of plastic waste in almost every ecosystem, affecting the fauna of the planet. However, recently, some studies have shown that some insects might be able to adapt, consuming a wide range of hydrocarbon base polymers. In this work, the adaptive capacity of larvae when feeding on different synthetic polymers derived from petroleum was studied.

View Article and Find Full Text PDF

Objective: This study aimed to examine and compare the efficacy of mouthwashes containing different proteins and peptide on the prevention of enamel erosion in vivo, as well as to evaluate the participants' satisfaction with the formulations.

Methods: Twelve participants were selected and underwent five cross-over mouthwash phases: Water (control); 0.1 mg/mL CaneCPI-5; 0.

View Article and Find Full Text PDF

Objective: In this in vivo proof-of-concept study, acquired pellicle engineering was implemented to promote alterations in the protein composition of the acquired enamel pellicle (AEP) and the bacterial composition of the dental biofilm after treatment with Sugarcane cystatin (CaneCPI-5).

Design: After prophylaxis, 10 volunteers rinsed (10 mL, 1 min) with the following solutions: 1) deionized water (HO- negative control or 2) 0.1 mg/mL CaneCPI-5.

View Article and Find Full Text PDF