Publications by authors named "F Henn"

Despite 15 years of extensive investigation, the fabrication and study of nanofluidic devices that incorporate a single carbon nanotube (CNT) still represents a remarkable experimental challenge. In this study, we present the fabrication of nanofluidic devices that integrate an individual single-walled CNT (SWCNT), showcasing a notable reduction in noise by 1-3 orders of magnitude compared to conventional devices. This achievement was made possible by employing high dielectric constant materials for both the substrate and the CNT-covering layer.

View Article and Find Full Text PDF

Purpose: Modifying foot progression angle (FPA), the angle between the line from the heel to the second metatarsal head and the line of progression, can reduce peak knee adduction moment (pKAM). However, determining the optimal FPA that minimizes pKAM without inducing unnatural walking patterns can be challenging. This study investigated the FPA-pKAM relationship using a robotic stepping trainer to assess the feasibility of determining the optimal FPA based on this relationship.

View Article and Find Full Text PDF

In recent experiments, unprecedentedly large values for the conductivity of electrolytes through carbon nanotubes (CNTs) have been measured, possibly owing to flow slip and a high pore surface charge density whose origin remains debated. Here, we model the coupling between the CNT capacitance and the electrolyte-filled pore one and study how electrolyte transport is modulated when a gate voltage is applied to the CNT. Our work shows that under certain conditions the quantum capacitance is lower than the pore one due to the finite quasi-1D CNT electronic density of states and therefore controls the CNT surface charge density that dictates the confined electrolyte conductivity.

View Article and Find Full Text PDF

Nanofluidics has a very promising future owing to its numerous applications in many domains. It remains, however, very difficult to understand the basic physico-chemical principles that control the behavior of solvents confined in nanometric channels. Here, water and ion transport in carbon nanotubes is investigated using classical force field molecular dynamics simulations.

View Article and Find Full Text PDF

In materials research, the control of wettability is important for many applications. Since they are typically based on phenolics, organic aerogels, and xerogels are intrinsically hydrophilic in nature, and examples of the chemical functionalization of such gels are scarce and often limited to powders. This study reports on the silylation of monolithic resorcinol-formaldehyde (RF) xerogels using solutions of silyl chlorides and triflates, respectively, in combination with an amine base.

View Article and Find Full Text PDF