Whether a saccade is accurate and has reached the target cannot be evaluated during its execution, but relies on post-saccadic feedback. If the eye has missed the target object, a secondary corrective saccade has to be made to align the fovea with the target. If a systematic post-saccadic error occurs, adaptive changes to the oculomotor behavior are made, such as shortening or lengthening the saccade amplitude.
View Article and Find Full Text PDFThe accuracy of saccadic eye movements is maintained by saccadic adaptation, a learning mechanism that is proposed to rely on visual prediction error, i.e., a mismatch between the pre-saccadically predicted and post-saccadically experienced position of the saccade target.
View Article and Find Full Text PDFSaccadic eye movements are often imprecise and result in an error between expected and actual retinal target location after the saccade. Repeated experience of this error produces changes in saccade amplitude to reduce the error and concomitant changes in apparent visual location. We investigated the relationship between these two plastic processes in a series of experiments.
View Article and Find Full Text PDFSaccadic eye movements bring objects of interest onto our fovea. These gaze shifts are essential for visual perception of our environment and the interaction with the objects within it. They precede our actions and are thus modulated by current goals.
View Article and Find Full Text PDFSaccadic adaptation is assumed to be driven by an unconscious and automatic mechanism. We wondered if the adaptation process is accessible to volitional control, specifically whether any change in saccade gain can be inhibited. Participants were exposed to post-saccadic error by using the double-step paradigm in which a target is presented in a peripheral location and then stepped during the saccade to another location.
View Article and Find Full Text PDF