Cancer continues to pose a significant global health challenge, with gastrointestinal (GI) cancers among the most prevalent and deadly forms. These cancers often lead to high mortality rates and demand the use of potent cytotoxic chemotherapeutics. For example, 5-fluorouracil (5-FU) forms the backbone of chemotherapy regimens for various GI cancers, including colorectal cancer.
View Article and Find Full Text PDFBackground: Lipids such as phosphatidic acids (PAs) and cardiolipins (CLs) present strongly tailing peaks in reversed phase liquid chromatography, which entails low detectability. They are usually analyzed by hydrophilic interaction liquid chromatography (HILIC), which hampers high-throughput lipidomics. Thus, there is a great need for improved analytical methods in order to obtain a broader coverage of the lipidome in a single chromatographic method.
View Article and Find Full Text PDFChemotherapy is a common and effective treatment for cancer, but these drugs are also associated with significant side effects affecting patients' well-being. One such debilitating side effect is mucositis, characterized by inflammation, ulcerations, and altered physiological functions of the gastrointestinal (GI) tract's mucosal lining. Understanding the mechanisms of chemotherapy-induced intestinal mucositis (CIM) is crucial for developing effective preventive measures and supportive care.
View Article and Find Full Text PDFUnlabelled: Hepatocellular carcinoma (HCC) is characterized by a low and variable response to chemotherapeutic treatments. One contributing factor to the overall pharmacodynamics is the activation of endoplasmic reticulum (ER) stress pathways. This is a cellular stress mechanism that becomes activated when the cell's need for protein synthesis surpasses the ER's capacity to maintain accurate protein folding, and has been implicated in creating drug-resistance in several solid tumors.
View Article and Find Full Text PDFNovel tumor-on-a-chip approaches are increasingly used to investigate tumor progression and potential treatment options. To improve the effect of any cancer treatment it is important to have an in depth understanding of drug diffusion, penetration through the tumor extracellular matrix and cellular uptake. In this study, we have developed a miniaturized chip where drug diffusion and cellular uptake in different hydrogel environments can be quantified at high resolution using live imaging.
View Article and Find Full Text PDF