Publications by authors named "F HeiSSe"

We present the measurements of individual bound electron g factors of ^{20}Ne^{9+} and ^{22}Ne^{9+} on the relative level of 0.1 parts per billion. The comparison with theory represents the most stringent test of bound-state QED in strong electric fields.

View Article and Find Full Text PDF

Inner-shell electrons naturally sense the electric field close to the nucleus, which can reach extreme values beyond 10 V cm for the innermost electrons. Especially in few-electron, highly charged ions, the interaction with the electromagnetic fields can be accurately calculated within quantum electrodynamics (QED), rendering these ions good candidates to test the validity of QED in strong fields. Consequently, their Lamb shifts were intensively studied in the past several decades.

View Article and Find Full Text PDF

Quantum electrodynamics (QED) is one of the most fundamental theories of physics and has been shown to be in excellent agreement with experimental results. In particular, measurements of the electron's magnetic moment (or g factor) of highly charged ions in Penning traps provide a stringent probe for QED, which allows testing of the standard model in the strongest electromagnetic fields. When studying the differences between isotopes, many common QED contributions cancel owing to the identical electron configuration, making it possible to resolve the intricate effects stemming from the nuclear differences.

View Article and Find Full Text PDF

The masses of the lightest atomic nuclei and the electron mass are interlinked, and their values affect observables in atomic, molecular and neutrino physics, as well as metrology. The most precise values for these fundamental parameters come from Penning trap mass spectrometry, which achieves relative mass uncertainties of the order of 10. However, redundancy checks using data from different experiments reveal considerable inconsistencies in the masses of the proton, the deuteron and the helion (the nucleus of helium-3), suggesting that the uncertainty of these values may have been underestimated.

View Article and Find Full Text PDF

The recently established agreement between experiment and theory for the g factors of lithiumlike silicon and calcium ions manifests the most stringent test of the many-electron bound-state quantum electrodynamics (QED) effects in the presence of a magnetic field. In this Letter, we present a significant simultaneous improvement of both theoretical g_{th}=2.000 889 894 4 (34) and experimental g_{exp}=2.

View Article and Find Full Text PDF