Gas chromatography has found highly successful application in NASA's flight programs. Gas chromatographs have been flown to both Mars and Venus where detailed compositional measurements were made. These instruments were quite small and relatively sensitive when compared to commercially available instruments; however, they do not appear adequate for future missions currently being planned.
View Article and Find Full Text PDFMisidentification of two peaks from the Pioneer Venus sounder probe gas chromatograph (SPGC), also formerly known as the LGC, gave rise to quantitative errors in the abundances of oxygen, argon, and carbon monoxide. The argon abundance is estimated at 67 parts per million and that of carbon monoxide at 20 parts per million. At this time, no estimates for the oxygen abundance can be made.
View Article and Find Full Text PDFLaboratory simulation and tests of the inlet sampling system and columns of the Pioneer Venus gas chromatograph show that the sensitivity to argon is not diminished after the column regeneration step, argon isotopes are not separated, oxygen and sulfur dioxide are not produced in the inlet sampling system from sulfur trioxide, and sulfur trioxide is not formed from sulfur dioxide and oxygen. Comparisons of the volatile inventory of Venus and Earth imply similar efficiencies of early outgassing but a lower efficiency for later outgassing in the case of Venus. The high oxidation state of the Venus atmosphere in the region of cloud formation may prohibit the generation of elemental sulfur particles.
View Article and Find Full Text PDFThe first gas chromatographic analysis of the lower atmosphere of Venus is reported. Three atmospheric samples were analyzed. The third of these samples showed carbon dioxide (96.
View Article and Find Full Text PDFThe evolution of N2, Ar, O2, and CO2 from Martian soil as a function of humidity in the Gas Exchange Experiment are correlated with the mean level of water vapor in the Martian atmosphere. All but O2 are associated with desorption. The evolution of oxygen is consistent with the presence of alkaline earth and alkali metal superoxides; and their peroxides and the gamma-Fe2O3 in the soil can account for the generation of radioactive gas in the Labeled Release Experiment.
View Article and Find Full Text PDF