We demonstrate that nonlinear response functions in many-body systems carry a sharp signature of interactions between gapped low-energy quasiparticles. Such interactions are challenging to deduce from linear response measurements. The signature takes the form of a divergent-in-time contribution to the response-linear in time in the case when quasiparticles propagate ballistically-that is absent for free bosonic excitations.
View Article and Find Full Text PDFWe consider fermions defined on a continuous one-dimensional interval and subject to weak repulsive two-body interactions. We show that it is possible to perturbatively construct an extensive number of mutually compatible conserved charges for any interaction potential. However, the contributions to the densities of these charges at second order and higher are generally nonlocal and become spatially localized only if the potential fulfils certain compatibility conditions.
View Article and Find Full Text PDFIn one-dimensional quantum gases there is a well known "duality" between hard core bosons and noninteracting fermions. However, at the field theory level, no exact duality connecting strongly interacting bosons to weakly interacting fermions is known. Here we propose a solution to this long-standing problem.
View Article and Find Full Text PDFWe introduce families of one-dimensional Lindblad equations describing open many-particle quantum systems that are exactly solvable in the following sense: (i) The space of operators splits into exponentially many (in system size) subspaces that are left invariant under the dissipative evolution; (ii) the time evolution of the density matrix on each invariant subspace is described by an integrable Hamiltonian. The prototypical example is the quantum version of the asymmetric simple exclusion process (ASEP) which we analyze in some detail. We show that in each invariant subspace the dynamics is described in terms of an integrable spin-1/2 XXZ Heisenberg chain with either open or twisted boundary conditions.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
December 2017
We investigate the implications of integrability for the existence of quantum disentangled liquid (QDL) states in the half-filled one-dimensional Hubbard model. We argue that there exist finite energy-density eigenstates that exhibit QDL behaviour in the sense of Grover & Fisher (2014 , P10010. (doi:10.
View Article and Find Full Text PDF