Publications by authors named "F H Cruzalegui"

Background: Lung cancer is the leading cause of cancer death worldwide, with poor survival despite recent therapeutic advances. A better understanding of the complexity of the tumor microenvironment is needed to improve patients' outcome.

Methods: We applied a computational immunology approach (involving immune cell proportion estimation by deconvolution, transcription factor activity inference, pathways and immune scores estimations) in order to characterize bulk transcriptomics of 62 primary lung adenocarcinoma (LUAD) samples from patients across disease stages.

View Article and Find Full Text PDF

The serine/threonine kinase DYRK1A has been implicated in regulation of a variety of cellular processes associated with cancer progression, including cell cycle control, DNA damage repair, protection from apoptosis, cell differentiation, and metastasis. In addition, elevated-level DYRK1A activity has been associated with increased severity of symptoms in Down's syndrome. A selective inhibitor of DYRK1A could therefore be of therapeutic benefit.

View Article and Find Full Text PDF

The kinase DYRK1A is an attractive target for drug discovery programs due to its implication in multiple diseases. Through a fragment screen, we identified a simple biaryl compound that is bound to the DYRK1A ATP site with very high efficiency, although with limited selectivity. Structure-guided optimization cycles enabled us to convert this fragment hit into potent and selective DYRK1A inhibitors.

View Article and Find Full Text PDF

Loss of the tumor suppressor PTEN confers a tumor cell dependency on the PI3Kβ isoform. Achieving maximal inhibition of tumor growth through PI3K pathway inhibition requires sustained inhibition of PI3K signaling; however, efficacy is often limited by suboptimal inhibition or reactivation of the pathway. To select combinations that deliver comprehensive suppression of PI3K signaling in PTEN-null tumors, the PI3Kβ inhibitor AZD8186 was combined with inhibitors of kinases implicated in pathway reactivation in an extended cell proliferation assay.

View Article and Find Full Text PDF

Triple-negative breast cancers (TNBCs) account for a large proportion of breast cancer deaths, due to the high rate of recurrence from residual, resistant tumor cells. New treatments are needed, to bypass chemoresistance and improve survival. The WNT pathway, which is activated in TNBCs, has been identified as an attractive pathway for treatment targeting.

View Article and Find Full Text PDF