Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease of motor neurons leading to death within 3 years and without a curative treatment. Neurotrophic growth factors (NTFs) are pivotal for cell survival. A reason for the lack of patient efficacy with single recombinant NTF brain infusion is likely to be due to the synergistic neuroprotective action of multiple NTFs on a diverse set of signaling pathways.
View Article and Find Full Text PDFFocal iron accumulation associated with brain iron dyshomeostasis is a pathological hallmark of various neurodegenerative diseases (NDD). The application of iron-sensitive sequences in magnetic resonance imaging has provided a useful tool to identify the underlying NDD pathology. In the three major NDD, degeneration occurs in central nervous system (CNS) regions associated with memory (Alzheimer's disease, AD), automaticity (Parkinson's disease, PD) and motor function (amyotrophic lateral sclerosis, ALS), all of which require a high oxygen demand for harnessing neuronal energy.
View Article and Find Full Text PDFAmyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that typically results in death within 3-5 years after diagnosis. To date, there is no curative treatment and therefore an urgent unmet need of neuroprotective and/or neurorestorative treatments. Due to their spectrum of capacities in the central nervous system-e.
View Article and Find Full Text PDFIron accumulation has been observed in mouse models and in both sporadic and familial forms of amyotrophic lateral sclerosis (ALS). Iron chelation could reduce iron accumulation and the related excess of oxidative stress in the motor pathways. However, classical iron chelation would induce systemic iron depletion.
View Article and Find Full Text PDFHuman platelet lysates (PLs), which contain multiple neurotrophins, have been proposed for treating neurodegenerative disorders, including Parkinson's disease (PD). However, current PLs suspended in plasma have high protein content and contain fibrinogen/fibrin and, following activation, also proteolytic and thrombogenic enzymes. Upon brain administration, such PLs may saturate the cerebrospinal fluid and exert neurotoxicity.
View Article and Find Full Text PDF